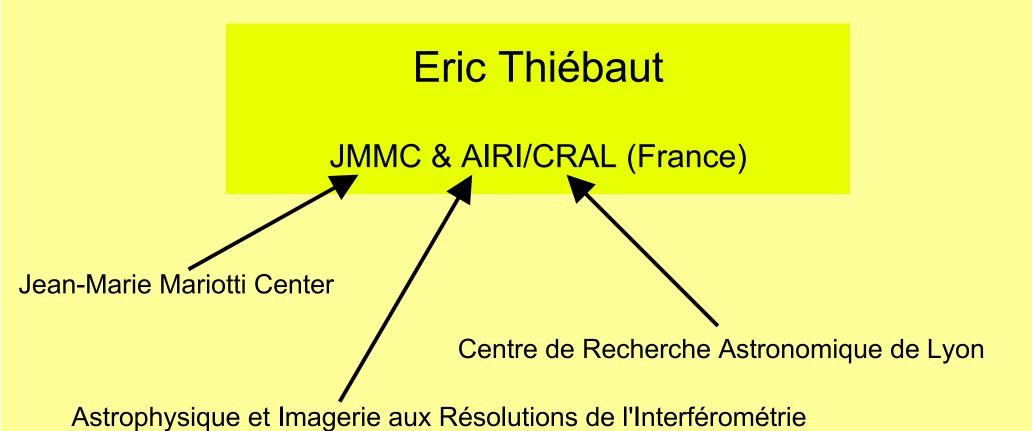
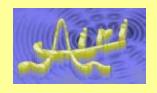
Image Reconstruction in Optical/IR Aperture Synthesis



Preamble

- 1/ The problem of optical/IR aperture synthesis imaging is quite different from radio-astronomy:
- one cannot rebuild the Fourier phase and produce synthetic complex visibilities (unless perhaps for redundant configuration in snapshot mode, i.e. no hyper-synthesis)
- ▶ fit phase closures and power spectrum data
- 2/ One has to *regularize* in order to:
- cope with missing data (i.e. interpolate between sampled spatial frequencies)
- avoid artifacts due to the sparse/non-even sampling
- result is biased toward a priori enforced by regularization it; is important to realize that in order to correctly understand the restored images ► formation of users



Approximations

- versatile brightness distribution model (no need for FFT's nor rebinning of the sampled spatial frequencies)
- simple model of the data:
 - point-like telescopes (OK as far as D << B)
 - calibrated powerspectrum and phase closure
- gaussian noise (not true for interferometric data at least because of the calibration)
- probably others ...

Brightness Distribution Model

general linear model of the brightness distribution:

$$z(\mathbf{x}) = \sum_{n} p_n f_n(\mathbf{x}) \quad \xrightarrow{\mathrm{FT}} \quad \hat{z}(\mathbf{u}) = \sum_{n} p_n \hat{f}_n(\mathbf{u})$$

or, using a grid:
$$z(\mathbf{x}) = \sum_{n} p_n f(\mathbf{x} - \mathbf{x}_n) \xrightarrow{\mathrm{FT}} \hat{z}(\mathbf{u}) = \hat{f}(\mathbf{u}) \sum_{n} p_n e^{-\mathrm{i} 2\pi \mathbf{x}_n \mathbf{u}}$$

model of *j*-th complex visibility: $\hat{z}(\mathbf{u}_j) = \sum_{n} a_{j,n} p_n$

$$\hat{z}(\mathbf{u}_j) = \sum_n a_{j,n} \, p_n$$

$$a_{j,n} = \hat{f}_n(\mathbf{u}_j)$$
 o

with:
$$a_{j,n} = \hat{f}_n(\mathbf{u}_j)$$
 or $a_{j,n} = \hat{f}(\mathbf{u}_j) e^{-\mathrm{i} \, 2 \, \pi \, \mathbf{x}_n \, \mathbf{u}_j}$

advantages:

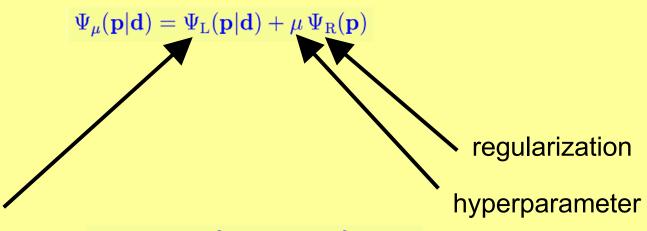
- exact Fourier transform
- choice of proper basis of functions (e.g. wavelets, delta functions for stars and splines for background, ...)

Inverse Problem

the image restoration problem is stated as a constrained optimization problem:

$$\mathbf{p}_{\mu} = rg \min_{\mathbf{p}} \ \Psi_{\mu}(\mathbf{p}|\mathbf{d})$$
 subject to $z(\mathbf{x}) \geq 0, orall \mathbf{x}$

penalty:



likelihood: $\Psi_{\rm L}({f p}|$

$$\Psi_{\mathrm{L}}(\mathbf{p}|\mathbf{d}) = \chi_{\mathrm{ps}}^{2}(\mathbf{p}|\mathbf{d}_{\mathrm{ps}}) + \chi_{\mathrm{cl}}^{2}(\mathbf{p}|\mathbf{d}_{\mathrm{cl}})$$

Likelihood Terms

likelihood for heterogeneous data: $\Psi_{\rm L}(\mathbf{p}|\mathbf{d}) = \chi_{\rm ps}^2(\mathbf{p}|\mathbf{d}_{\rm ps}) + \chi_{\rm cl}^2(\mathbf{p}|\mathbf{d}_{\rm cl})$

powerspectrum data:
$$\chi^2_{ps}(\mathbf{p}|\mathbf{d}_{ps}) = \mathbf{r}^t_{ps} \cdot \mathbf{C}^{-1}_{ps} \cdot \mathbf{r}_{ps}$$

with residuals:
$$r_{\mathrm{ps},j} = d_{\mathrm{ps},j} - |\hat{z}(\mathbf{u}_j)|^2$$

phase closure data:
$$\chi_{\rm cl}^2(\mathbf{p}|\mathbf{d}_{\rm cl}) = \mathbf{r}_{\rm cl}^{\rm t} \cdot \mathbf{C}_{\rm cl}^{-1} \cdot \mathbf{r}_{\rm cl}$$

with residuals:
$$r_{\mathrm{cl},k} = \left[d_{\mathrm{cl},k} - \phi(\mathbf{u}_{j_1(k)}) - \phi(\mathbf{u}_{j_2(k)}) + \phi(\mathbf{u}_{j_3(k)})\right]_{\pm \pi}$$

 $\phi(\mathbf{u}) \equiv \arg[\hat{z}(\mathbf{u})]$ is the Fourier phase

is the difference wrapped in $[-\pi,+\pi]$ to avoid the phase wrapping problem (Haniff, 1994)

Regularization Term

Several possible expressions for the regularization:

☐ maximum entropy method:

$$\Psi_{\text{MEM}}(\mathbf{p}) = \sum_{n} \left(g_n - p_n + p_n \log \frac{p_n}{g_n} \right)$$

☐Tikhonov:

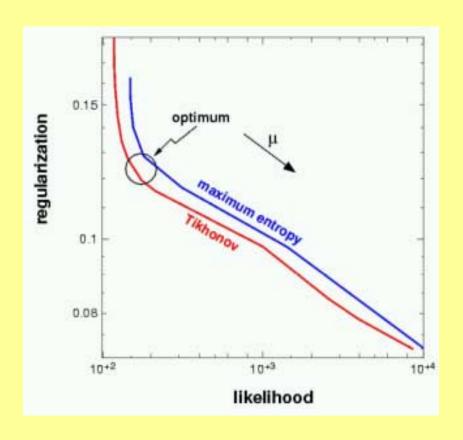
$$\Psi_{\text{Tikhonov}}(\mathbf{p}) = (\mathbf{p} - \mathbf{g})^{\text{t}} \cdot \mathbf{R} \cdot (\mathbf{p} - \mathbf{g})$$

where **g** is the prior, **R** is a symetric positive matrix

others: ...

Choosing the Hyperparameter(s)

- ☐ deterministics methods (e.g. Lannes, Wiener)
- \square statistics methods, e.g. Gull: $\Psi_{\mu}(\mathbf{p}_{\mu}) = \Psi_{L}(\mathbf{p}_{\mu}|\mathbf{d}) + \mu \Psi_{R}(\mathbf{p}_{\mu}) = \mathrm{E}\{\Psi_{L}(\mathbf{p}_{\mu}|\mathbf{d})\}$
- □ cross validation (CV)
- ☐ generalized cross validation (GCV, Wahba)
- ☐ L-curves (Hansen)



Potential Difficulties

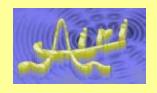
- heterogeneous data ► more hyperparameters?
- possibly large number of parameters
- penalty to minimize is:
 - non-quadratic ➤ non-linear optimization
 - multi-mode (sum of terms with different behaviour)
 - constrained (at least positivity)
 - non-convex ➤ multiple local minima
 - very difficult to optimize
- phase wrapping problem (solved)

Optimization Part

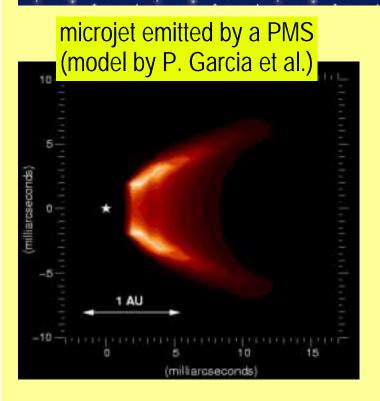
optimization of a non-convex, non-quadratic penalty function of a large number of constrained parameters by:

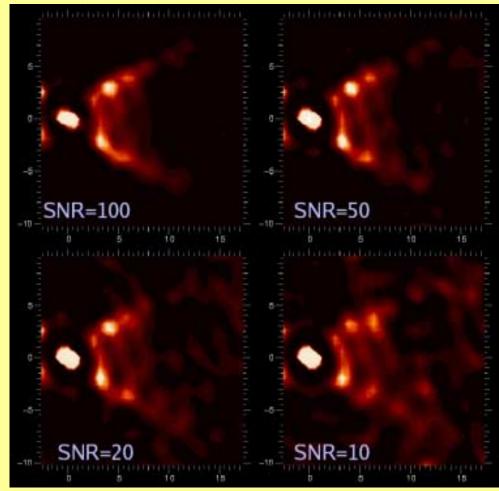
•descent methods:

- variable metric methods (BFGS) are faster than conjugate gradient
 - there exists limited memory version (VMLM, Nodedal 1980)
 - can be modified to account for bound constraints (VMLM-B, Thiébaut 2002)
 - easy to use (only gradients required)
- local subspace method should be more efficient (Skilling & Brian 1984; Thiébaut 2002) but needs second derivatives
- •global methods?



Test Image: PMS's Microjet





Future Work for the Image Restoration Software

- account for correlated data (+)
- use data exchange format (+)
- automatically adjust hyperparameters (++)
- improve optimization part (+++++)
- link with ASPRO (G. Duvert) for more realistic simulated data
- provide error bars (++)
- process real data (Amber with 3 telescopes in 2004)

Future Work for the Image Restoration Group of the JMMC

- elaborate on proper regularization(s)
- model of the data may be more complex
- metric to compare restored images with different
 - configurations → optimization of (u,v) coverage to reduce observing time
 - regularizations
- estimation of the best hyperparameters
- educate astronomers (summer school, workshops, ...):
 regularized image reconstruction is not so difficult to understand
 and must be understood to realize the unavoidable biases in the
 result

